8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, September 17, 2019, Chicago, IL, USA.

Control-theoretic Approach to Malleability Cancellation by Attacked Signal Normalization Kaoru Teranishi and Kiminao Kogiso, The University of Electro-Communications

Encrypted Control System

Conventional control system

Encrypted control system [1, 2]

Encrypted control is a cryptographic approach to security enhancement for networked control systems. In this method, controller parameters and signals over network links are encrypted.

Cancellation Method

Theorem

Suppose that F, x(t), or u(t) is falsified. Now, $\tilde{u}(t) = ku(t)$ we design a new input with normalization

$$\hat{u}(t) = \|F_R x(t)\| e_u(t), \quad e_u(t) = \frac{\tilde{u}(t)}{\|\tilde{u}(t)\|}$$

Homomorphic encryption $\mathcal{E} = (Gen, Enc, Dec)$

m, m' — $\mathsf{Gen}:\mathcal{S}\to\mathcal{K}$ Key generation $\rightarrow m \circ m'$ Enc↓ Dec $\mathsf{Enc}:\mathcal{M} o\mathcal{C}$ Encryption $\mathsf{Enc}(m), \mathsf{Enc}(m') \longrightarrow \mathsf{Enc}(m) \bullet \mathsf{Enc}(m')$ $\mathsf{Dec}:\mathcal{C} o\mathcal{M}$ Decryption

Homomorphism $Dec(Enc(m) \bullet Enc(m')) = m \circ m'$

S: Security Parameters, \mathcal{K} : Key Pairs, \mathcal{M} : Plaintext sp., \mathcal{C} : Ciphertext sp.

ElGamal encryption (Multiplicatively homomorphic encryption)

Dec(Enc(m) * Enc(m')) = mm' *: Hadamard product

Paillier encryption (Additively homomorphic encryption)

Dec(Enc(m)Enc(m')) = m + m'

Malleability

loop system achieves asymptotic stability.

Corollary

We can modify the new input as follows:

where $F_{R^{2s+1}}$ is a right triangle matrix given by 2s + 1 times of QR decomposition, and $F_{R^{2j-1}Q}$ is a corresponding orthogonal matrix for $F_{R^{2j}}$.

The proposed method cancels malleability-based pole-assignment attacks without controller information. Even if adversaries eavesdrop obfuscated feedback gain, they cannot obtain the controller information.

Numerical Example

Plant

ElGamal encryption (Multiplicatively homomorphic encryption) $f: (c_1, c_2) \mapsto (c_1, kc_2), (c_1, c_2) = \mathsf{Enc}(m), \mathsf{Dec}(f(c_1, c_2)) = km$

Paillier encryption (Additively homomorphic encryption)

 $f: c \mapsto c^k, \quad c = \mathsf{Enc}(m), \quad \mathsf{Dec}(f(c)) = km$

Malleability is a property of cryptosystems that a ciphertext can be generated from another ciphertext without decryption. The objective of this study is to propose a novel attack using malleability for encrypted control systems and control-theoretic cancellation method of the attack.

Pole-Assignment Attack

 $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ This plant is discretized with a sampling time of 10 ms.

 $u(t) = \hat{u}(t)$

State-feedback gain

$$F = \begin{bmatrix} -0.51 & -0.12 & 0.15 \\ -0.12 & -0.98 & -0.01 \end{bmatrix}, F_{R^3} F_{RQ}^{\top} = \begin{bmatrix} -0.42 & -0.83 & 0.09 \\ 0.31 & -0.54 & -0.12 \end{bmatrix}$$

Malleability-based pole-assignment attack

where Λ is a set of poles of an original control system, and $\tilde{\Lambda}$ is a set of poles of an attacked control system.

Theorem

By using malleability, adversaries can conduct pole-assignment attacks even if control systems are encrypted. This type of attacks is called malleability-based pole-assignment attacks.

Future Work

Partial falsification

The proposed method cannot be capable for *partial* falsification attacks because the attacks change the length of an input vector and rotate it. The authors will extend the proposed method so that it cancels scalar multiplication and rotation.

Detection method

Although the proposed method does not need a detection process, it is also crucial to detect malleability-based pole-assignment attacks.

Computational complexity

The proposed method may maintain the real-time property. The authors will investigate the computational complexity of the proposed method.

[1] K. Kogiso and T. Fujita, "Cyber-security enhancement of networked control systems using homomorphic encryption," IEEE Conference on Decision and Control, 2015, pp. 6836-6843. [2] F. Farokhi, I. Shames and N. Batterham, "Secure and private control using semi-homomorphic encryption," Control Engineering Practice, vol. 67, pp. 13-20, 2017.